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Three-dimensional large-amplitude oscillations of a mercury drop were obtained by
electrical excitation in low gravity using a drop tower. Multi-lobed (from three to
six lobes) and polyhedral (including tetrahedral, hexahedral, octahedral and dodec-
ahedral) oscillations were obtained as well as axisymmetric oscillation patterns. The
relationship between the oscillation patterns and their frequencies was obtained, and
it was found that polyhedral oscillations are due to the nonlinear interaction of waves.

A mathematical model of three-dimensional forced oscillations of a liquid drop is
proposed and compared with experimental results. The equations of drop motion are
derived by applying the variation principle to the Lagrangian of the drop motion,
assuming moderate deformation. The model takes the form of a nonlinear Mathieu
equation, which expresses the relationships between deformation amplitude and the
driving force’s magnitude and frequency.

1. Introduction
Liquid drop oscillation has attracted the attention of many scientists since the 19th

century, since it is not only an interesting basic phenomenon but is also important in
such diverse areas as nuclear physics, cloud physics and chemical engineering. Since
it has become possible to conduct experiments in microgravity, understanding liquid
drop oscillation has become more important, not only from an academic viewpoint
but also for the practical aspects of material processing in containerless levitation and
measurement of the physical properties of molten materials in space. In a microgravity
environment, a free liquid assumes a spherical shape due to surface tension and it
is easy to levitate and manipulate a relatively large liquid drop without a container.
This is one of the advantages of the space environment. Understanding the nature of
drop oscillations is indispensable for future applications of containerless processing.
In addition, nonlinear effects resulting from the interaction of finite-amplitude waves
are of interest from physical and mathematical points of view, and experimental
realization of large-amplitude oscillations is useful for the study of these effects.

The first large-amplitude drop oscillation experiments were conducted by acousti-
cally exciting a drop suspended in an immiscible liquid (a mixture of silicone oil and
carbon tetrachloride suspended in distilled water) in 1 g conditions (Trinh & Wang
1982). These experiments showed oscillating patterns in the l = 2, 3, 4 axisymmetric
(m = 0) modes and also showed the dependence of the amplitude of oscillation of the
second mode on oscillation frequency.

† Present address: Osaka Prefecture University, 1-1 Gakuen-Cho, Sakai, Osaka, Japan.
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Finite-amplitude, axially symmetric free oscillations of small (0.2 mm) droplets
have been obtained by breaking up a laminar jet, and the amplitude variations of
the oscillations have been measured (Becker, Hiller & Kowalewski 1991). In these
experiments, in which oscillations undergo natural decay, it was found that when
the amplitude of natural oscillations of the fundamental mode exceeds approximately
10% of the droplet radius, typical nonlinear effects occurred such as the dependence
of the amplitude on oscillation frequency, asymmetry of the oscillation amplitude,
and interactions between modes.

Polyhedral-shaped oscillations of a drop suspended in an aqueous solution were
obtained by applying periodic mechanical excitation (Arai, Adachi & Takaki 1991). A
drop of orthotoluidine with a radius of approximately 2 cm was suspended in a dilute
aqueous sugar solution in a square container. A thin rod connected to a loudspeaker
was placed in contact with the drop from above, producing an oscillation. Two rods
were used to obtain asymmetric oscillations.

Egry, Lohoefer & Sauerland (1993) measured oscillations of an electromagnetically
levitated metal drop in both 1 g and microgravity conditions in order to measure
surface tension and viscosity. Surface tension was determined by measuring the
frequency of small-amplitude oscillations excited by an electromagnetic pulse.

With regard to theoretical works, a linear theory of small-amplitude oscillations of
an inviscid drop was first proposed by Rayleigh (1879), who expressed the fundamental
modes in terms of Legendre polynomials. Lamb (1932, Art 355) looked at the effect
of low viscosity, and an equation describing the effect of arbitrary viscosity on the
infinitesimal-amplitude oscillation of drops was derived by Reid (1960). Moderate-
amplitude axisymmetric oscillations of incompressible inviscid drops were analysed
by Tsamopoulos & Brown (1983) using a Poincaré–Lindstedt expansion technique,
and the effects of mode coupling at the second order in amplitude on drop shape
and velocity potential were predicted. Natarajan & Brown (1986, 1987) considered
quadratic and third-order resonance in three-dimensional drop oscillations using
equations describing the interaction of the modes, which were derived by applying
the variational principle to the appropriate Lagrangian.

Lundgren & Mansour (1988) made numerical studies of nonlinear oscillation and
other motions of large axially symmetric weakly viscous liquid drops in zero gravity
using a boundary-integral method. They showed that a weak viscosity has a relatively
large effect on resonant-mode coupling phenomena. Becker et al. (1991) proposed
a nonlinear model for inviscid droplet oscillations which predicted the nonlinear
effects they found in their experiments. Feng & Beard (1991) analysed the three-
dimensional oscillation characteristics of a charged drop in an insulating medium
and in an electrostatic field. They observed a fine structure in the characteristic
frequency spectrum of the oscillations of electrostatically deformed drops by means
of the multiple-parameter perturbation method. They also discovered the dependence
of oscillation frequency on electric field strength and on the degree and the rank of
spherical harmonics, indicating that the removal of degeneracy may be considered a
consequence of symmetry breaking. Basaran (1992) and Becker, Hiller & Kowalewskii
(1994) considered nonlinear viscous liquid drop oscillations and showed that finite
viscosity has a large effect on mode coupling.

It can be seen that large-amplitude oscillations over a wide frequency range,
especially three-dimensional oscillations, have not been realized experimentally prior
to this present work; only some numerical simulations (Lundgren & Mansour 1988)
have been conducted. A different experimental method from those mentioned above
was used in this study, and the electrically driven liquid drop excitation method under
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Figure 1. Schematic of the experimental set-up.

low-gravity conditions is a feature of these experiments. This method allows the
imposition of an oscillation of arbitrary frequency on an arbitrarily sized drop and
also makes it easy to conduct three-dimensional oscillation experiments in a short-
duration low-gravity environment, obtained by dropping the experimental apparatus.

2. Experiment
2.1. Experimental apparatus

A schematic of the experimental apparatus used in 1 g conditions is shown in figure 1.
The drop had to be conducting, and so mercury was chosen as the liquid. The mercury
drop was immersed in an electrolytic solution (in this case 0.1 N sulphuric acid) on a
flat plate. Through two electrodes, one in contact with the drop and another immersed
in the electrolytic solution, an alternating signal of arbitrary voltage amplitude and
frequency was applied between the drop and the solution.

For two-dimensional oscillations, experiments were conducted by varying the fre-
quency of a constant-amplitude (5, 10, 20, 30 V) applied alternating signal and the
resulting oscillations of the drop were observed using a standard video camera or a
high-speed (1000 frames/s) video recorder.

Experiments on three-dimensional oscillations were conducted using a 10 m high
drop tower giving a drop time of 1.4 s. After an initial oscillation of the capsule
containing the experimental apparatus caused by its separation from a beam, the
acceleration level decreases to less than 10−3 g. At impact, after 1.4 s of free fall, the
capsule receives an acceleration of more than 30 g. The drop oscillation experiments
were conducted during a 1 s interval corresponding to a very low gravity level. The
apparatus in the capsule and the cylindrical experiment container are shown in figures
2(a) and 2(b). Under 1 g conditions, a mercury drop is placed at the centre of the
bottom of the cylindrical container filled with dilute sulphuric acid. Just after the
release of the capsule, the mercury drop becomes spherical and floats upwards due to
its repulsive force. An alternating voltage signal (20, 30 V) is applied through a wire
running along the axis of the container and four wires immersed in the sulphuric
acid: 20 V were applied from 2 Hz to 14 Hz and 30 V from 14 Hz to 30 Hz to induce
large-amplitude oscillations. The time required for the drop oscillation to reach a
steady state was measured as about 1 s, leaving an interval of only 0.4 s during which
steady drop oscillations could be observed in free fall. Drop behaviour was observed
using two video cameras (30 frames/s with 1/250 s shutter speed, which is insufficient
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Figure 2. (a) Schematic of the drop capsule and the experimental set-up, and (b) a photo of the
cylindrical container with the mercury drop on its bottom.

for observing high-frequency oscillations) set at right angles to each other. The highest
measurable frequency of oscillation was limited to 30 Hz.

2.2. Experimental method

Due to potential difference, an electric charge is carried through the electrolytic
solution onto the drop’s surface and the amount of charge on the surface can easily
be varied by changing the voltage of the applied alternating signal. The applied
signal’s voltage range was between 0 and 30 V over a frequency range of between 0
and 60 Hz. The drop may be oscillated at any frequency within this range.

The electric charge on the surface of the drop has the effect of reducing surface
tension and so varying the electric charge causes a variation of the drop’s surface
tension, which is the superposition of surface tension in its usual meaning and an
electrical force. A variation of surface tension is equivalent to a variation of applied
pressure, and the variation of the electromechanical force drives drop oscillation, as
shown in the analysis of § 3.3.2. The electromechanical force was measured as shown
in figure 3(a) and an example of the measured electromechanical force variation
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Figure 3. (a) Schematic of the method of measuring the mercury surface tension. (b) Measured
surface tension and the applied voltage (5 Hz) as functions of time.

Vac (V) ∆σ (dyne cm−1) ∆σ/σav

± 5 27 0.08
±10 36 0.11
±20 42 0.14

Table 1. Variation of the surface tension due to the 5 Hz applied voltage.

together with the applied alternating voltage is shown in figure 3(b). Although
the measured force seems to contain higher harmonics caused by problems of the
measuring technique, such as rapid surface deformation due to electromechanical
force change (mercury tends to become spherical by increasing its surface tension), it
seems reasonable to infer that the electromechanical force variation of the mercury is
driven by the applied voltage and changes almost sinusoidally.
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Measurements of the variations of the electromechanical force ∆σ and the ratios
of the measured values to the averaged electromechanical force ∆σ/σav are shown
in table 1. Gas produced at the mercury surface and surface oscillations of the drop
itself prevented precise measurement, especially with a 30 V applied alternating signal.
The surface tension of mercury in sulphuric acid in the absence of an applied voltage
was measured at 330 dyne cm−1, which is much lower than the 482 dyne cm−1 surface
tension of mercury in a nitrogen atmosphere (Tokyo Astronomical Observatory 1985).
Applying an alternating voltage signal reduced the averaged apparent surface tension
as shown in figure 3(b). Although estimation of the error of the measured surface ten-
sion is difficult, it is thought that the error of the ratio ∆σ/σav could be less than 10%.

Variation of the electromechanical force is thought to be caused by the variation
of forces between the electric charges on the mercury surface. Although the precise
mechanism is not clear, the result in figure 3(b) shows that it depends on a movement
of electric charges onto the mercury surface. It is therefore considered that the
force acting on the spherical liquid surface is almost point symmetrical even though
the arrangement of the electrodes is not, as shown in figure 2(b). In addition to
the electromechanical force, electrical stress is thought to act on the surface as a
tension (Zhang & Basaran 1996) and this force is not point symmetric with respect
to the centre of the mercury sphere. However, assuming the permittivity of the
dilute sulphuric acid to be 100, the order of the electrical stress is estimated to
be ∼ 0.05, which is negligible compared to the measured surface tension variation
(∼ 40 dyne cm−1), and so the effect of the electrical stress can be neglected.

2.3. Experimental results for two-dimensional oscillations under normal gravity
conditions

Oscillation patterns were observed in a mercury drop of mass 13.6 g with a radius
of 1.05 cm. The mercury drop is flattened by its own weight, and its oscillation is
assumed to be quasi-two-dimensional.

In figure 4, the normalized maximum deformation of the drop from spherical shape
ζ (ζ = Rmax/R0 − 1) is shown with the corresponding applied voltage. The drop’s
amplitude variation is expressed as the ratio of the circumscribed circle radius of the
deformed drop Rmax to the normal circle radius R0. Figure 3(b) shows that surface
tension and applied voltage are in opposite phase while the surface tension is in
phase with the drop’s amplitude, but this was not always the case observed in the
experiments.

Observations of oscillation patterns were made at 0.2 Hz increments of the applied
signal frequency from 1 Hz to 45 Hz. At each increment, the signal frequency was kept
constant for 10 s. In figure 5, deformation from the spherical shape ζ is shown versus
the drop oscillation frequency (fD) along with photographs of typical patterns. ζ does
not become zero since the drop was found to oscillate at any frequency of the applied
signal. Rmax was determined by measuring the diameter of a circle circumscribed
around a deformed drop at maximum deformation, which was drawn onto a hard
copy obtained from a video image. On the horizontal axis, the eigenfrequencies fn
obtained by linear theory (Rayleigh 1879) neglecting the effects of the surrounding
fluid, that is the sulphuric acid, are also shown. The clear resonant oscillations of
some modes are indicated by closed symbols while oscillations which do not show
any clear mode, although having large deformation from the spherical shape, are
indicated by open symbols. Patterns for l = 2, 3, 5 and 6 appeared clearly, but the
pattern corresponding to l = 4 appeared only at one frequency. For other mercury
drops of different radii, the fourth mode of oscillation was observed only in a very
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Figure 4. Relation of phases in the amplitude of the third-mode drop oscillation and the applied
voltage. Frequency of the applied voltage is 5 Hz and the drop oscillation frequency is 2.5 Hz.
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Figure 5. Deformation from the spherical shape ζ of the drop versus the frequency of oscillation fD
(Hz). Resonant frequencies fl obtained by the linear theory are also shown. R0 = 1.05 cm (13.6 g),
Vac = ± 10 V.

narrow frequency band. The l = 7, 8, 10, 11 and 16 oscillation modes were excited, but
at very different frequencies from those predicted by the linear theory. The seventh
mode appeared between the third and the fourth and the eleventh mode appeared
between the fifth and the sixth. Further, in the three-dimensional oscillations a strange
mode appeared between the second and the third modes. These observations indicate
interaction between waves.
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c = 0 Hz

c = 4 Hz (x = 4 Hz) Oblate–Prolate l = 2, m = 0

c = 6 Hz (x = 6 Hz) Tetrahedron–Tetrahedron

c = 7 Hz (x = 3.5 Hz) Oblate–Prolate l = 2, m = 0

c = 14 Hz (x = 14 Hz) Hexahedron–Octahedron

Figure 6 (a,b). For caption see page 318.

2.4. Experimental results for three-dimensional oscillations under low-gravity
conditions

Three-dimensional large-amplitude drop oscillations in low gravity were obtained
by varying the frequency of the applied signal in 1 Hz increments from 0 to 60 Hz,
separate experimental runs being conducted for each fixed frequency. Images were
taken with two video cameras every 1/30 s and successive pictures at 1/30 s intervals
(1/15 s for the 2 Hz case) are shown in figures 6(a) to 6(e). The frequency of the
alternating signal and the measured frequency of drop oscillations, in brackets, with
the oscillation mode are shown for each sequence.
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c = 28 Hz (x =14 Hz)

c = 30 Hz

c = 36 Hz l = 5, m = 0

c = 44 Hz Dodecahedron

Figure 6 (c,d). For caption see page 318.
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(e)
c = 50 Hz Dodecahedron
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c = 58 Hz
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Figure 6. Photos of the variation of the three-dimensional oscillating patterns, taken every 1/30 s
(R0 = 0.5 cm). (a) Vac = ± 0 V, f = 0 Hz; (b, c) Vac = ± 20 V; (d, e) Vac = ± 30 V.

After the experiment capsule was released, the mercury drop moved upwards in its
container accompanied by a small deflection of its surface (figure 6a), but this effect
is thought to be negligible compared to the large-amplitude forced oscillation. Clear
axisymmetric large-amplitude oscillations appeared only at the 4 Hz, 7 Hz (l = 2,
m = 0) and 16 Hz (l = 3, m = 0) frequencies of the applied alternating signal;
however, because there was no camera observing along the axis of the container this
axisymmetry can only be supposed. For the 19, 28, 36 and 52 Hz cases, three-lobed,
four-lobed, five-lobed and six-lobed modes appeared respectively. These oscillation
patterns are inferred to be m = 3, m = 4, m = 5 and m = 6 modes at l = 0 respectively.
The three-dimensional non-axisymmetric oscillation pattern (l 6= 0, m 6= 0) was
also observed. A tetrahedron–tetrahedron oscillation was observed at 6 Hz, and a
hexahedron–octahedron oscillation appeared at 14 Hz. At 44 Hz, a polyhedron based
on a pentagon was observed, which is assumed to be a dodecahedron; a flat pentagon
can be seen on its surface and the profile of the polyhedron is a pentagon. An
oscillation pattern which is assumed to be sixth mode occurred around the 50 and
60 Hz frequencies; however, this is not clear due to the insufficient video frame rate.
At 28 Hz, two oscillation patterns were observed, depending on the applied voltage
(20 or 30 V). The first (at 20 V) is the oscillation mode of l = 0 and m = 4 and
the second (at 30 V) is a twisted fourth mode. The signal voltage was raised from
20 V to 30 V from 28 Hz, because the higher voltage was necessary to obtain large
amplitudes at higher frequency oscillations. The results indicate that the oscillation
patterns change due to the applied external force magnitude, and the twisted pattern
appeared at a higher energy than that of the four-lobed one.
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Figure 7. Polyhedra in duality relations.

The oscillation modes l and m were determined by comparing the shapes obtained
in the experiments to those obtained by Arai et al. (1991) and also to the surface
obtained by plotting the function using three-dimensional computer graphics,

rs(θ, φ) = R[1 + aPm
l (cos θ)eimφ],

where rs is the radius of the deformed drop, R is the radius of the spherical non-
deformed drop and a is the amplitude of oscillation.

These polyhedral oscillations occurred between polyhedra which are duals of each
other. A facet of a polyhedron oscillates to produce a projection which forms, with
other projections, a facet of another polyhedron. The dual relations among the
Platonic polyhedra are shown in figure 7.

3. Theoretical analysis
3.1. Lagrangian of the oscillating drop

In order to analyse our experimental results, the method of deriving the equations
of drop motion by applying the variational principle to the appropriate Lagrangian,
following Natarajan & Brown (1986, 1987), was used with the assumption that the
deformation of the drop from the original sphere is moderate. Irrotational inviscid flow
was assumed for the drop motion due to its simplicity, but a dissipation term following
the method of Lamb (1932, Art 355) was added. The effect of the surrounding fluid
was neglected; this is assumed to be reasonable because the surrounding fluid is of
much lower density than the mercury drop.

The analysis was simplified based on our experimental observations. Usually, peri-
odic large-amplitude oscillations are caused by an external force and only one or
a few harmonics waves are expected to occur, instead of the infinite number of
low-amplitude waves of a wide range of frequencies which are usually considered in
linear theory. Unrealistic waves can thus be neglected in the case of large-amplitude
oscillations of the drop. In the same way, only some of the degenerate modes are
thought to appear.

Present theory can deal with small- to moderate-amplitude drop oscillations of a
low-viscosity liquid. Following the definition of Basaran (1992), the regions in which
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present theory is applicable are A/L � 1 and ∞ > ρL2/µt∗ � 1, where A/L is the
amplitude-to-wavelength ratio and ρL2/µt∗ is the ratio of the time scale for vorticity
to diffuse from the interface into the interior of the drop to the time scale for the fluid
motion t∗. Although the latter region is applicable to mercury, the amplitudes of os-
cillations obtained in the experiments at low frequencies lie outside the former region.

As in Natarajan & Brown (1986, 1987), the following equations are considered:

rs(θ, φ, t) = R[1 + εζ(θ, φ, t)], (3.1a)

ϕ(r, θ, φ, ξ) = (σR/ρ)1/2[εϕ′(η, θ, φ, t)], (3.1b)

p0(t) = (σ/R)[−2 + ε2p′0(t)], (3.1c)

where the dimensionless radial coordinate η and the dimensionless time coordinate ξ
are normalized as η = r/R and ξ = t/(ρR3/σ)1/2. If it is assumed that the deformation
ζ of the radius of the drop from that of the spherical shape is sufficiently small, a
special solution for the velocity potential is given by linear theory (Landau & Lifshitz
1958b) as

ϕ = Aeiωξη`Pm
` (cos θ)eimφ = Aeiωξη`Y m

` , (3.2)

where Pm
` (cos θ)eimφ and Y m

` are the associated Legendre polynomials. From the
kinematic condition ∂ζ/∂t = υr = ∂ϕ/∂r at r = 1, the deformation is given as

ζ =
`

iω
Y m
` Aeiωξ. (3.3)

The velocity potential and the deformation are expressed as general solutions:

ϕ =
∑

η`Y m
` eiωξ ≡∑ η`R`, (3.4a)

ζ =
∑ `

iω
Y m
` eiωξ =

∑ `

iω
R` ≡

∑
S`, (3.4b)

where R` and S` are time-dependent surface spherical harmonics of degree `.
In the case of forced oscillations, it can be assumed that only one wave becomes

dominant. Setting ϕ = ηnRn and ζ = Sn as first approximations is thought to be
reasonable considering the experimental results. The dimensionless Lagrangian L′
given by Natarajan & Brown (1987) then becomes

L′ = ε2
∫∫ [(

1
2
n(n+ 1)− 1

)
S2
n + 1

2
nR2

n − ∂Rn

∂ξ
Sn

]
sin θ dθ dφ

+ε3
∫∫ [

p′0Sn − 2
3
S3
n + 1

4
n(3n+ 1)R2

nSn − 1
2
(n+ 2)

∂Rn

∂ξ
S2
n

]
sin θ dθ dφ

+ε4
∫∫ [

p′0S
2
n − 1

8

{
n2(n+ 1)2

c=0 or 1
4
n2(n+ 1)2

c=n or n4
c=2n

}
S4
n

+
{

1
2
n2(2n+ 1)c=0 or 1

4
n2(3n+ 1)c=n or 0c=2n

}
R2
nS

2
n

− 1
6
(n+ 1)(n+ 2)

∂Rn

∂ξ
S3
n

]
sin θ dθ dφ, (3.5)

where p′0 = 2
3
S2
n from the conservation of mass at O(ε3). In the terms of O(ε4) of (3.5),

three values, all of which depend on the value of c, are described as the coefficients
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of S4
n and R2

nS
2
n , as in the four-fold integrals (A5), (A6) and (A7) in Appendix A of

Natarajan & Brown (1987).
When n = 2, for example, c takes the values 0, 2 and 4, and when n = 3, c takes the

values 0, 2, 4 and 6. This is owing to the condition that the degrees of the spherical
harmonics (a, b, c) must satisfy the relations a + b + c = 2g (where g is an integer),
a > 0, b > 0, and |a − b| 6 c 6 a + b for the three-fold integrals of the spherical
harmonics to be non-zero.

3.2. Governing equations and variation of frequency as a function of amplitude

Using the Lagrange equation

d

dt

(
∂L′

∂q̇

)
− ∂L′

∂q
= 0, (3.6)

the third-order kinetic equation is first obtained as

ω2
n

ω2
S̈n + ω2

nSn = ε

{
−1

2
(n+ 2)

∂2

∂ξ2
S2
n0 − 1

4
n2(3n+ 1)R2

n0 + n(n+ 2)
∂Rn0

∂ξ
Sn0

− ∂

∂ξ

[
1

2
n(3n+ 1)R2

n0Sn0

]}
−
(

1− ω2
n

ω2

)
S̈n, (3.7)

with

Sn = Sn0 + εSn1 (3.8a)

and

Sn0 = a cos ωξ, a ≡ Sn(θ, φ), (3.8b)

where a is the normalized maximum amplitude of the drop oscillation. To obtain the
first-order derivation from the values of the linear theory:

ω = ωn + εωn1, (3.8c)

ω2
n = n[n(n+ 1)− 2]; (3.8d)(

1− ω2
n

ω2

)
S̈n =

ε2ωnωn1 + ε2ω2
n1

ω2
aω2(− cos ωt) ∼ −ε2aωnωn1 cos ωt. (3.8e)

In (3.7), the term (1 − ω2
n/ω

2)S̈n is subtracted from both sides for Sn0 = a cos ωt,
which has the right frequency ω, to satisfy the left-hand side of (3.7) which is equal
to zero.

The kinetic equation (3.7) is then transformed to

ω2
n

ω2
S̈n1 + ω2

nSn1 = 2aωn1ωn cos ωξ + B cos 2ωξ + C, (3.9a)

with

B = 1
8
(21a2ω2 + 3a2nω2) (3.9b)

and

C = 1
8
(7a2ω2 + a2nω2). (3.9c)

From the condition that the secular term must disappear, we obtain ωn1 = 0 and
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solutions

Sn1 = − B

3ω2
n

cos 2ωξ +
C

ω2
n

, (3.10a)

Rn1 = −1

n

2

3

ω

ω2
n

B sin 2ωξ. (3.10b)

Next, proceeding to the second-order deviation with

Sn = Sn0 + εSn1 + ε2Sn2 (3.11a)

and ω = ωn + ε2ωn2 (3.11b)

(
1− ω2

n

ω2

)
S̈n =

ε22ωnωn2 + εω2
n2

ω2
aω2(− cos ωt) ∼ −ε22aωnωn2 cos ωt, (3.11c)

the fourth-order kinetic equation is obtained:

ω2
n

ω2
S̈n2 + ω2

nSn2 = −(n+ 2)
∂2

∂ξ2
(Sn0Sn1)− 1

6
(n+ 1)(n+ 2)

∂2

∂ξ2
(S3
n0)

− 1
2
n(3n+ 1)

∂

∂ξ
{Rn0Sn1 + Rn1Sn0}

− [n2(2n+ 1)c=0 or 1
2
n2(3n+ 1)c=n or 0c=2n

] ∂
∂ξ

(R0S
2
0 )

− 1
2
n2(3n+ 1)Rn0Rn1 + n(n+ 2)

(
∂Rn1

∂ξ
Sn0 +

∂Rn0

∂ξ
Sn1

)
− 8

3
nS3

n0 + 1
2

[
n3(n+ 1)2

c=0 or 1
4
n2(n+ 1)2

c=n or n5
c=2n

]
S3
n0

− [n3(2n+ 1)c=0 or 1
2
n3(3n+ 1)c=n or 0c=2n

]
R2
n0Sn0

+ 1
2
n(n+ 1)(n+ 2)

∂

∂ξ
Rn0S

2
n0

+2aωn ωn2 cos ωξ. (3.12)

In the case of n = 2, there exist three coupling values c = 0, 2, 4 in the four-fold
integral of S2 and the values of the integral at each value of c are obtained from
(A4)–(A8) of the Appendix as mentioned above. Considering the factor as (2c + 1),
the ratios of the values of the integrals with (a = b = 2, α = β = 0) corresponding to
c = 0, c = 2 and c = 4 are 1

5
, 1

7
and 3

70
. From the principle that the Lagrangian (3.5)

should take a minimum value in a physical process, it is thought that a coupling at
c = 0 probably occurs.

The condition that the coefficient of cos ωξ must disappear when c = 0 yields

ωn2 = a2

{
1

ωn

(
n− 3n3

16
− 3n4

8
− 3n5

16

)
+ ωn

(
17

64
− 9n

32
+

17n2

64

)}
= ka2, (3.13)

with

ω22 = −1.90a2 at n = 2 (3.14)
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Figure 8. The ratio of the frequency decrease ω22/ω2 versus
the amplitude of oscillation a (for c = 0).

and

ω32 = −4.31a2 at n = 3. (3.15)

The ratio of the frequencies |ω22/ω2| increases with increasing amplitude of oscillation,
as shown in figure 8.

3.3. Amplitude of drop oscillations caused by an external force

3.3.1. Dissipation of the oscillating drop

If the velocity potential has the following form:

φ =
rn

Rn
R′n = ηnR′n, (3.16)

the total dissipation of the oscillating drop is given by Lamb (1932, Art 355) as

J = 2F = 2n(n− 1)(2n+ 1)
µ

R

∫ 2π

0

∫ π

0

R′2n sin θ dθ dφ. (3.17)

The total dissipation J is normalized to correspond to (3.5) by the following trans-
formation:

R → 1, (3.18a)

φ = (σR/ρ)1/2[εφ′(η, θ, φ, ξ)] = (σR/ρ)1/2εηnRn(θ, φ, ξ), (3.18b)

µ′ =
µ

(ρR3/σ)1/2
, Rn = −1

n

∂Sn

∂ξ
, ν ′ =

ν

(ρR3/σ)1/2
. (3.18c)

Normalized total dissipation J ′, corresponding to (3.5), is expressed, considering the
increase of the drop surface δA by deformation effects

1 + δA = 1 + 2ζε+ ε2
[
ζ2 + 1

2
(ζ2
θ + ζ2

φ cosec2θ)
]

+ ε3(0),

by

J ′ =
2(n− 1)(2n+ 1)

n
ν ′
∫ 2π

0

∫ π

0

(
∂Sn

∂x

)2

(1 + 2Sn + · · ·) sin θ dθ dφ (3.19)

and the term to be added to the Lagrange equation is

∂J ′

∂Ṡn
= ν ′

4(n− 1)(2n+ 1)

n

∫ 2π

0

∫ π

0

(
∂Sn

∂x

)
(1 + 2Sn + · · ·) sin θ dθ dφ (3.20)
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as

d

dt

(
∂L′

∂q̇

)
− ∂L′

∂q
+
∂J ′

∂q̇
= 0. (3.21)

Here, the damping coefficient is normalized as

λ′ =
4(n− 1)(2n+ 1)

n
ν ′. (3.22)

3.3.2. Forced oscillation equation

An oscillating surface tension σ0(1 + feiγξ) is considered as an external force term.
The terms associated with surface tension in the Lagrangian (as in (4) of Natarajan
& Brown 1986) are expressed as∫∫

σ0(1 + feiγξ)r2
s

(
1 +

r2
θ

r2
s

+
r2
φ

r2
cosec2θ

)1/2

rs sin θ dθ dφ =

∫∫
σ0(1 + feiγξ)R2

×{1 + 2ζε+ ε2
[
ζ2 + 1

2
(ζ2
θ + ζ2

φ cosec2θ)
]

+ O(ε3) + · · ·} rs sin θ dθ dφ (3.23a)

with the contribution of the third term as∫∫
σ0(1 + feiγξ)/R[−2 + ε2p′0]

[
1
3
R3(1 + εζ)3 − 1

4π
V
]

sin θ dθ dφ. (3.23b)

Then, the terms in the dimensionless Lagrangian associated with the surface tension
L′f0 and the Lagrange equation to the second order become respectively

L′f0 = feiγξ
{

1 + 2εSn + ε2
[

1
2
n(n+ 1)S2

n

]}
, (3.24a)

∂L′f0

∂Sn
= feiγξε2n(n+ 1)Sn. (3.24b)

From (3.23), it can be deduced that the variation of the surface tension is equal to
the variation of the pressure. That suggests that (3.23) are applicable to acoustic
oscillations. The kinetic equation (3.7) is expressed, including the damping term, as
follows:

S̈n + 2λ′(1 + 2Sn)Ṡn + ω2
n(1 + h cos γξ)Sn = ε{NL terms}, (3.25a)

h = n2(n+ 1)f/ω2
n (3.25b)

with

λ = λ′(1 + 2Sn). (3.26)

Equation (3.25a) becomes the Mathieu equation, regarding λ as the apparent damping
coefficient:

S̈n + 2λṠn + ω2
n (1 + h cos γ ξ) Sn = ε{NL terms}. (3.27)

It is known from the experimental result shown in figure 4 that the strongest resonance
occurs when γ is nearly twice ωn. From setting γ = 2ωn + ε and looking for Sn =
a cos

[(
ωn + 1

2
ε
)
ξ + δ

]
, the resultant equation of the forced oscillation is obtained as

S̈n + 2λṠn + ω2
nSn = − 1

2
n2(n+ 1)fā cos

[(
ωn + 1

2
ε
)
ξ − δ]+ ε{NL terms}. (3.28)
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n = 2 R (cm) fk n = 3 R (cm) fk

1 0.054 1 0.098
0.5 0.15 0.5 0.28
0.25 0.43 0.25 0.79
0.1 1.72 0.1 3.11

Table 2. Threshold of f for various drop radii.
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Figure 9. The amplitude versus the frequency of the forced oscillation. (Experimental data are
two-dimensional and are from figure 5, n = 2, R = 1 cm, f = 0.11, k = 1.90 (c = 0) and n = 3,
R = 1 cm, f = 0.18, k = −4.31 (c = 0).)

From (3.28), the values of the amplitude of oscillation a are obtained, following
Landau & Lifshitz (1958a), as follows:

ā = 0, (3.29a)

ā2 =
1

k

[
ε

2
+

√(
1

16ω2
n

n4(n+ 1)2f2

)
− λ2

]
, (3.29b)

ā2 =
1

k

[
ε

2
−
√(

1

16ω2
n

n4(n+ 1)2f2

)
− λ2

]
. (3.29c)

As λ can be approximated as

λ = λ′(1 + 2ā),

the amplitude a versus ε is obtained from (3.29).
The threshold of f which causes the strong resonance, obtained from hk = 4λ/ωn,

is shown in table 2.
In the case of a mercury sphere (ν = 0.0012 cm2 s−1, σ = 300 dyne cm−1, ρ =

13 g cm−3), the theoretical variation of the amplitude of oscillation as a function of
frequency in the case c = 0 is shown in figure 9 for f = 0.11 (n = 2) and 0.18
(n = 3), along with the experimental results (n = 2 and n = 3) of the two-dimensional
case, which are also shown in figure 5. Both results can be seen to be in fairly good
agreement with the theory when the drop deformation is moderate (ζ < 0.5). However,
there is a large discrepancy between theoretical predication and experimental result
when the deformation is very large (ζ > 0.5). This indicates the limitations of the
present analysis. Comparison between theoretical predictions and experimental results
for the cases c = 0, 2 and 4 shows that the prediction in the case c = 0 is in closest
agreement with the results, especially at the n = 3 mode. This fact indicates that the
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choice of c = 0 in (3.12) is reasonable. In the prediction, a larger value of f for n = 3
than that of the experiment (f = 0.11) was used. This comes from the fact that the
experimental result is for a quasi-two-dimensional oscillation; that is, the increase
in the drop surface area, included in the damping term of (3.25a), is smaller in a
two-dimensional oscillation than in a three-dimensional one.

4. Discussion
An explanation can be given concerning the reason for the appearance of tetra–

tetrahedron oscillations as cubic nonlinearities, hexa–octahedron oscillations as
quadratic nonlinearities and dodecahedron–icosahedron oscillations near the main
resonance, although the mathematics lacks rigour. The experimental results shown in
figure 6 indicate that multi-lobed oscillations (l = 0) occur at the main resonance, at
γ = 2ωn + ε. Also, the oscillation between polyhedra (fifth and sixth modes) occurs
at nearly the same frequency as that of the multi-lobed oscillation (l = 0, m = 5 and
6). The reason is thought to be as follows. In the dimensionless Lagrangian (3.7),
quadratic terms of Sn are given by

L′ = · · · ε2
∫∫

S6S6 sin θ dθ dφ

= · · · ε2
∫∫

C6
6C
−6
6 exp

(
2i
{(
ωn +

ε

2

)
ξ − δ

})
sin θ dθ dφ (4.1a)

or, equivalently, by

ε2
∫∫

C0
6C

0
6 exp

(
2i
{(
ωn +

ε

2

)
ξ − δ

})
sin θ dθ dφ. (4.1b)

Equation (A3) of the Appendix shows that the values of the above integrals depend
only on the value of a (6 in this case) and are equal. The corresponding term in the
kinetic equation becomes

∂L′

∂S6

= · · · ε2
∫∫

C6
6 exp

(
i
{(
ωn +

ε

2

)
ξ − δ

})
sin θ dθ dφ (4.2a)

or

ε2
∫∫

C6
6 exp

(
i
{(
ωn +

ε

2

)
ξ − δ

})
sin θ dθ dφ. (4.2b)

From this, both axisymmetric (l = n, m = 0) and non-axisymmetric (l = n, m = n)
modes which occur from the main resonance have the same frequency.

At γ = ωn + 1
2
ε, the oscillation between a hexahedron and an octahedron (l = 4)

occurred at about half the frequency of the axisymmetric oscillation (l = 4, m = 0),
which suggests that this oscillation is caused by the quadratic nonlinearities in the
right-hand side of the kinetic equation (3.7). In the dimensionless Lagrangian (1.7),
the cubic term must be

L′ = · · · ε3
∫∫

S4S4S4 sin θ dθ dφ

= · · · ε3
∫∫

C4
4C
−4
4 C0

4 exp
(

3i
{(ωn

2
+
ε

4

)
ξ − δ

})
sin θ dθ dφ (4.3)
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because α + β + γ = 0 must be satisfied. The corresponding term of the kinetic
equation becomes

∂L′

∂S4

= · · · ε3
∫∫

S4S4 sin θ dθ dφ

= · · · ε3
∫∫

C4
4C
−4
4 exp

(
2i
{(ωn

2
+
ε

4

)
ξ − δ

})
sin θ dθ dφ. (4.4)

Here, a differentiation was conducted with regard to S4 of m = 0.
At γ = 2

3
ωn + 1

3
ε, the oscillation between a tetrahedron and a tetrahedron occurred

at about one third of the frequency of the axisymmetric oscillation (l = 3, m = 0).
This oscillation is thought to be caused by the cubic nonlinearities of the kinetic
equation (3.12). The fourth-order term

L′ = · · · ε4
∫∫

S3S3S3S3 sin θ dθ dφ

= · · · ε4
∫∫

C3
3C
−3
3 C0

3C
0
3 exp

(
4i
{(ωn

3
+
ε

6

)
ξ − δ

})
sin θ dθ dφ (4.5)

produces the cubic term:

∂L′

∂S3

= · · · ε4
∫∫

S3S3S3 sin θ dθ dφ

= · · · ε4
∫∫

C3
3C
−3
3 C0

3 exp
(

3i
{(ωn

3
+
ε

6

)
ξ − δ

})
sin θ dθ dφ. (4.6)

The differentiation was also conducted for S3 of m = 0.
Considering that a term of higher-order nonlinearities has smaller energy than a

term of lower-order nonlinearities and that for a higher-order oscillation mode, more
energy is required to cause large-amplitude oscillation than for a lower oscillation
mode, a weak externally forced oscillation is thought to cause the polyhedron oscilla-
tion. This is why at the fifth and sixth modes, polyhedron oscillations and multi-lobed
oscillations coexist.

In figure 10, the frequencies of the drop oscillations obtained in the experiment
are shown and compared with the values predicted by the linear theory. For the
polyhedral oscillations, the tetrahedron is classified as the third mode, the hexahedron
as the fourth and the dodecahedron as the fifth. At the vertical bars at the fifth and
sixth modes, multi-lobed mode (l = 0, m = 5, 6) oscillations and polyhedron mode
oscillations coexist.

Considering (3.23), 2λ′(1 + 2Sn), the dissipation term, becomes negative for a small
period of a cycle when the amplitude of oscillation is larger than 0.5. At that time,
energy is absorbed into the oscillation. This may be the reason why the maximum
amplitudes of oscillation, at half-cycle different phases, are different.

5. Conclusions
Two- and three-dimensional large-amplitude drop oscillations were obtained using

a new method under both 1 g and low-gravity conditions. The frequency of drop os-
cillation was arbitrarily changed and the relationship between drop oscillation modes
and frequencies was obtained. Various modes of drop oscillation have also been
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Figure 10. The relation between the three-dimensional oscillation modes and the frequency of
the applied alternating voltage, at their occurrence. The linear theory values, calculated with
σav = 300 dyne cm−1, are also shown as a dashed line R0 = 0.5 cm.

observed for the first time, and the nonlinear effects of waves coupling with the oscil-
lation pattern is clearly shown. Some three-dimensional oscillation modes were found
to be excited as subharmonics. Tetra–tetrahedron oscillation (third mode) occurred
at one third of the frequency predicted by the linear theory and hexa–octahedron
(fourth mode) oscillation at half the predicted frequency. However, polyhedral oscil-
lations (fifth mode and sixth mode) were excited near the main resonant frequencies.
Strange oscillation patterns, assumed to be a combination of two modes, were also
excited.

Kinetic equations for the three-dimensional oscillating drop were derived by ap-
plying variational principles to the Lagrangian of the fourth-order of nonlinearity.
A decrease of the first eigenfrequency from that predicted by linear analysis, due
to finite-amplitude oscillation, was discovered. This decrease is proportional to the
square of the amplitude of oscillation and depends on the degree of the spherical
harmonics which are coupled in the fourth-order integral.

The governing equation for the forced oscillation of the drop was found to be
a deformed nonlinear Mathieu equation. By deriving its solution, the relationships
between oscillation mode, oscillation amplitude, external force, damping coefficient
and frequency were obtained and compared with experimental results. These showed
fairly good agreement, proving the correctness of the analysis. The appearance of
polyhedra was explained using third- and fourth-order integrals of spherical har-
monics. The relationship between the selection of an oscillation mode and a given
energy was formulated by using integral values of quadratic, cubic and fourth-order
nonlinear terms.

The authors acknowledge the referees for their helpful comments.
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Nomenclature
ā: Normalized maximum amplitude of the drop oscillation

a, b, c, k, `, m, n: Degrees of the spherical harmonics

Cα
a : Basis functions for spherical functions

fD: Frequency of drop oscillation

fn: Eigenfrequency of drop oscillation of mode n

f: Variation ratio of the surface tension with respect to its

average value

fk: Threshold of f to cause resonance

g: Integer

J: Total dissipation of the oscillating drop

J ′: Dimensionless total dissipation

L: The Lagrangian for an oscillating drop

L′: Dimensionless Lagrangian

L′f0: Dimensionless Lagrangian associated with surface tension

variation

Pl: The Legendre polynomials

Pα
a , P

m
` : Associated Legendre polynomials

p̄0: The Lagrange multiplier corresponding to the pressure

p′0: Deviation of the pressure from the value corresponding to

the static spherical drop

q: A general coordinate

q̇: A general velocity

R: Radius of a spherical drop

Rn: Time-dependent surface spherical harmonics of degree n

which correspond to the velocity potential

Rn0, Rn1, Rn2: Surface spherical harmonics as solutions of the kinetic

equation of the drop oscillation

R′n: Surface spherical harmonics which correspond to the

velocity potential

r: Coordinate in the radial direction

rs: Radius of the deformed drop

rθ, rφ, rsθ, rsφ: Derivatives of r and rs, with respect to θ and φ

Sn: Surface spherical harmonics corresponding to the

deviations from the spherical shape

Sn0, Sn1, Sn2: Surface spherical harmonics as solutions of the kinetic

equation of the drop oscillation

Sn: Time-independent part of the spherical harmonics Sn
Sm, S`, Sk: Time-dependent surface spherical harmonics corresponding

to the deviations from the spherical shape

t: Time

Y m
` : Associated Legendre polynomials

V : Volume of the drop

α, β, γ: Rank of the spherical harmonics

ρ: Density of the liquid

ϕr, ϕθ, ϕφ, ϕt, ϕη, ϕξ: Derivatives of the velocity potential
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ε: Order of the amplitude of the drop oscillation or deviation

of the frequency

ξ: Dimensionless time coordinate

η: Dimensionless radial coordinate

υr: Velocity in the radial direction

ω: Frequency of the drop oscillation

ωn: Eigenfrequency of the n linear drop oscillation mode

ωn1, ωn2: Deviation of the frequency of oscillation

µ: Viscosity coefficient

µ′: Dimensionless viscosity coefficient

ν: Dynamic viscosity coefficient

ν ′: Dimensionless dynamic viscosity coefficient

σ, σ0: Surface tension of the liquid

λ: Apparent damping coefficient

λ′: Dimensionless damping coefficient

ζ: Maximum deformation from the spherical shape or

amplitude of the drop oscillation

ζθ, ζφ: Derivatives of ζ with respect to θ and φ

δab, δαβ: The Kronecker delta function

Θ: Normalized associated Legendre polynomial

k: Coefficient of the square of the amplitude expressing

the decrease in the frequency

γ: Frequency of the external force

Appendix
Using the basis functions for the spherical harmonics, defined by Brink & Satchler

(1968), the integrals of the product of two, three and four spherical-harmonic basis
functions are given by (Natarajan & Brown 1987)

Cα
a (θ, ϕ) = (−1)α

[
(a− α)!
(a+ α)!

]1/2

Pα
a (θ)eiαϕ if α > 0, (A 1)

C−αa (θ, ϕ) = (−1)αCα
a (θ, ϕ)∗, (A 2)∫ 2π

0

∫ π

0

Cα
a (θ, ϕ)Cβ

b (θ, ϕ)∗ sin θ dθ dϕ =
4π

(2a+ 1)
δabδαβ. (A 3)

The integral of the product of three spherical harmonics is given in terms of the 3-j
symbols and the Gaunt integral (Yoshida et al. 1967):∫ 2π

0

∫ π

0

Cα
aC

β
b C

γ
c sin θ dθ dϕ = 4π

(
a b c
0 0 0

)(
a b c
α β γ

)

=
(−1)g−a−β(g − b)!g!

(g − a)!(g − b)!(g − c)!(2g + 1)!

√
(c− α− β)!(a+ α)!(b+ β)!(b− β)!

(c+ α+ β)!(a− α)!

×∑
t

(−)t
(c+ α+ β + t)!(a+ b− α− β − t)!

(c− α− β − t)!(a− b+ α+ β + t)!(b− β − t)!t! , (A 4)
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0

∫ π

0

Cα
aC

β
b C

δ
dC

ε
e sin θ dθ dϕ =

min(a+b,c+d)∑
c=0

∫ 2π

0

∫ π

0

Cα
aC

β
b |cCδ

dC
ε
e sin θ dθ dϕ

=
∑
c=0

φ
(abde)
c;αβδε (A 5)

φ
(abde)
c;αβδε = (−1)α+β(2c+ 1)

(
a b c
0 0 0

)(
a b c
α β −α− β

)

×
(
d e c
0 0 0

)(
d e c
δ ε α+ β

)
. (A 6)

Then we have:∫∫
SaSb|cSdSe sin θ dθ dϕ

=
a

iω

[
(a+ α)!

(a− α)!
]1/2

(−1)α
b

iω

[
(b+ β)!

(b− β)!

]1/2

(−1)β
d

iω

[
(d+ δ)!

(d− δ)!

]1/2

(−1)δ

× e

iω

[
(e+ ε)!

(e− ε)!
]1/2

(−1)ε
∫∫

Cα
aC

β
b |cCδ

dC
ε
e sin θ dθ dy (A 7)

=
a

iω

[
(a+ α)!

(a− α)!
]1/2

(−1)α
b

iω

[
(b+ β)!

(b− β)!

]1/2

(−1)β
d

iω

[
(d+ δ)!

(d− δ)!

]1/2

(−1)δ
e

iω

×
[

(e+ ε)!

(e− ε)!
]1/2

(−1)ε(−1)α+β(2c+ 1)

(
a b c
0 0 0

)(
a b c
α β −α− β

)

×
(
d e c
0 0 0

)(
d e c
δ ε α+ β

)
. (A 8)
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